Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(2): 367-370, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194570

RESUMEN

We investigate optical transmission in cavity magnon polaritons and discover a complex multi-window magnetically induced transparency and a bistability with magnetic and optical characteristics. With the regulation of Kerr nonlinear effects and driven fields, a complex multi-window resonant transmission with fast and slow light effects appears, which includes transparency and absorption windows. The magnetically induced transparency and absorption can be explained by the destructive and constructive interference between different excitation pathways. Moreover, we demonstrate the bistability of magnons and photons with a hysteresis loop, where magnetic and optical bistabilities can induce and control each other. Our results pave a new way, to the best of our knowledge, for implementing a room-temperature multiband quantum memory.

2.
Opt Express ; 31(16): 26276-26288, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710491

RESUMEN

We investigate the transmission of probe fields in a coupled-cavity system with polaritons and propose a theoretical schema for realizing a polariton-based photonic transistor. When probe light passes through such a hybrid optomechanical device, its resonant point with Stokes or anti-Stokes scattered effects, intensity with amplification or attenuation effects, as well as group velocity with slow or fast light effects can be effectively controlled by another pump light. This controlling depends on the exciton-photon coupling and single-photon coupling. We also discover an asymmetric Fano resonance in transparency windows under the strong exciton-photon coupling, which is different from general symmetric optomechanically induced transparency. Our results open up exciting possibilities for designing photonic transistors, which may be useful for implementing polariton integrated circuits.

3.
Phys Rev E ; 107(2-1): 024218, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932477

RESUMEN

We study the ground-state stability of the trapped one-dimensional Bose-Einstein condensate under a density-dependent gauge field by variational and numerical methods. The competition of density-dependent gauge field and mean-field atomic interaction induces the instability of the ground state, which results in irregular dynamics. The threshold of the gauge field for exciting the instability is obtained analytically and confirmed numerically. When the gauge field is less than the threshold, the system is stable, and the gauge field induces chiral dynamics of the wave packet. When the gauge field is greater than the threshold, the system is unstable, and the ground-state wave packet will be deformed and fragmented. Interestingly, we find that as the gauge field approaches the threshold, strong dipolar and breathing dynamics take place, and strong modes mixing occurs, the instability of the system sets in. In addition, we show that the stability of the system can be well controlled by periodical modulation of the trapping potential. We provide theoretical evidence to understand and control the irregular dynamics associated with chiral superfluid induced by density-dependent gauge field.

4.
Phys Rev E ; 104(2-1): 024212, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34525534

RESUMEN

The stability and superfluidity of the Bose-Einstein condensate in two-leg ladder with magnetic field are studied. The dispersion relation and the phase diagram of the system are obtained. Three phases are revealed: the Meissner phase, the biased ladder (BL) phase, and the vortex phase. The dispersion relation and phase transition of the system strongly depend on the magnitude of atomic interaction strength, the rung-to-leg coupling ratio and the magnetic flux. Particularly, the change of the energy band structure in the phase transition region is modified significantly by the atomic interaction strength. Furthermore, based on the Bogoliubov theory, the energetic and dynamical stability of the system are invested. The stability phase diagram in the full parameter space is presented, and the dependence of superfluidity on the dispersion relation is illustrated explicitly. The atomic interaction strength can produce dynamical instability in the energetic unstable region and can expand the superfluid region. The results show that the stability of the system can be controlled by the atomic interaction strength, the rung-to-leg coupling ratio and the magnetic flux. In addition, the excitation spectrums in the Meissner phase, BL phase and vortex phase are further studied. The modulation of the excitation spectrum and the energetic stability of the system by the atomic interaction strength, the rung-to-leg coupling ratio and magnetic flux is discussed. Finally, through the numerical simulation, the dynamical instability of the system is verified by the time evolution of the Bloch wave and rung current. This provides a theoretical basis for controlling the superfluidity of the system.

5.
Phys Rev E ; 102(3-1): 032220, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33076041

RESUMEN

The Bose-Einstein condensates in a finite depth potential well provide an ideal platform to study the quantum escape dynamics. In this paper, the ground state, tunneling, and diffusion dynamics of the spin-orbit coupling (SOC) of Bose-Einstein condensates with two pseudospin components in a shallow trap are studied analytically and numerically. The phase transition between the plane-wave phase and zero-momentum phase of the ground state is obtained. Furthermore, the stability of the ground state is discussed, and the stability diagram in the parameter space is provided. The bound state (in which condensates are stably trapped in the potential well), the quasibound state (in which condensates tunnel through the well), and the unstable state (in which diffusion occurs) are revealed. We find that the finite depth potential well has an important effect on the phase transition of the ground state, and, interestingly, SOC can stabilize the system against the diffusion and manipulate the tunneling and diffusion dynamics. In particular, spatial anisotropic tunneling and diffusion dynamics of the two pseudospin components induced by SOC in quasibound and unstable states are observed. We provide an effective model and method to study and control the quantum tunneling and diffusion dynamics.

6.
Sci Rep ; 7(1): 15635, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142281

RESUMEN

By variational analysis and direct numerical simulation, we study the phase transition and stability of a trapped D-dimensional Bose-Einstein condensate with spin-orbit coupling. The complete phase and stability diagrams of the system are presented in full parameter space, while the collapse dynamics induced by the mean-filed attraction and the mechanism for stabilizing the collapse by spin-orbit coupling are illustrated explicitly. Particularly, a full and deep understanding of the dependence of phase transition and stability mechanism on geometric dimensionality and external trap potential is revealed. It is shown that the spin-orbit coupling can modify the dispersion relations, which can balance the mean-filed attractive interaction and result in a spin polarized or overlapped state to stabilize the collapse, then changes the collapsing threshold dependent on the geometric dimensionality and external trap potential. Moreover, from 2D to 3D system, the mean-field attraction for inducing the collapse is reduced and the collapse speed is enhanced, namely, the collapse can be more easily stabilized in 2D system. That is, the collapse can be manipulated by adjusting the spin-orbit coupling, Raman coupling, geometric dimensionality and the external trap potential, which can provide a possible way for elaborating the collapse dynamics experimentally.

7.
Phys Rev E ; 93(2): 022214, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26986338

RESUMEN

We study the collective dynamics of the spin-orbit coupled two pseudospin components of a Bose-Einstein condensate trapped in a quasi-one-dimensional harmonic potential, by using variational and directly numerical approach of binary mean-field Gross-Pitaevskii equations. The results show that, because of strong coupling of spin-orbit coupling (SOC), Rabi coupling, and atomic interaction, the collective dynamics of the system behave as complex characters. When the Rabi coupling is absent, the density profiles of the system preserve the Gauss type and the wave packets do harmonic oscillations. The amplitude of the collective oscillations increases with SOC. Furthermore, when the SOC strength increases, the dipole oscillations of the two pseudospin components undergo a transition from in-phase to out-of-phase oscillations. When the Rabi coupling present, there will exist a critical value of SOC strength (which depends on the Rabi coupling and atomic interaction). If the SOC strength is less than this critical value, the density profiles of the system can preserve the Gauss type and the wave packets do anharmonic (the frequency of dipole oscillations depends on SOC) oscillations synchronously (i.e., in-phase oscillations). However, if the SOC strength is larger than this critical value, the wave packets are dynamically fragmented and the stable dipole oscillations of the system can not exist. The collective dynamics of the system can be controlled by adjusting the atomic interaction, SOC, and Rabi-coupling strength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...